В чем измеряется нагрузка

Электрическая нагрузка — это нагрузка создаваемая в электрической сети включенными для работы в сети электроприемниками, она выражается в единицах тока или мощности. Присоединяются к электрическим сетям электроприемники в одиночку либо группами. Электроприемники могут входить в состав группы не только одинакового, а также различного назначения и режима работы. Зависит режим работы системы электроснабжения одинаковых приемников и их групп от режима работы или его сочетаний одиночных приемников либо их групп.

Характер нагрузки в сети может в процессе работы электроприемников оставаться неизменным, изменяться во всех или отдельных фазах, сопровождаться возникновением высших гармоник напряжения или тока. Ввиду этого электрическая нагрузка в сети бывает следующих типов:

— спокойная симметричная (преобладающее большинство трехфазных электроприемников);

К специфическим нагрузкам относятся резкопеременная, нелинейная и несимметричная нагрузка.

Резкими набросами и провалами тока или мощности характеризуется резкопеременная электрическая нагрузка. Неравномерная нагрузка фаз характерна для несимметричной нагрузки, вызывается она однофазными и трехфазными (реже) приемниками с неравномерной загрузкой фаз. В сети при несимметричной нагрузке возникают токи, которые имеют прямую, нулевую и обратную последовательности. Электроприемниками с нелинейной вольт-амперной характеристикой создается нелинейная нагрузка, при в сети ней появляются высшие гармоники напряжения или тока, происходит искажение синусоидальной формы напряжения или тока.

Созданию специфических нагрузок способствует работа электродуговых печей, полупроводниковых преобразовательных установок или сварочных установок. В основном эти установки принадлежат промышленным. Как известно, электрические сети промышленных предприятий связаны через трансформаторные подстанции с сетями сельскохозяйственного назначения, тогда можно считать, что на электросети сельскохозяйственного назначения оказывают влияние специфические электрические нагрузки промышленных предприятий.

Электроприемники сельскохозяйственного назначения по мощности подразделяются на три группы:

1. Большой мощности (больше 50 кВт)

2. Средней мощности (от 1 до 50 кВт)

3. Малой мощности (до 1 кВт)

Для работы некоторые электроприемники используют постоянный ток, а также токи повышенной частоты (до 400 Гц) или высокой (до 10 кГц).

Перерывы в электроснабжении могут допускать во время работы некоторые группы приемников, но существуют такие группы для которых перерыв в электроснабжении недопустим.

Электроприемники по надежности и бесперебойности электроснабжения разделены на 3 категории.

Первая категория включает электроприемники и комплексы электроприемников, при перерыве в электроснабжении которых может возникнуть опасность для жизни людей, расстройство технологического процесса, повреждение основного оборудования. Для этих приемников необходима возможность обеспечения электроэнергией не меньше, чем от двух независимых источников питания. На время автоматического восстановления электроснабжения от второго источника питания, допускается нарушение их электроснабжения.

Вторую категорию представляют электроприемники и комплексы электроприемников, при перерыве электроснабжения которых наблюдается массовый недовыпуск продукции, простои механизмов и рабочих.

От двух независимых источников питания необходимо обеспечивать электроснабжение приемников второй категории, допускается перерыв в электроснабжении только на время, необходимое для автоматического переключения на второй источник.

К третьей категории относятся электроприемники и комплексы электроприемников, которые не попадают по определение первых двух категорий. Их электроснабжение может осуществляться лишь от одного источника питания. На требующееся для проведения восстановительных работ время, но не больше суток допускается перерыв их электроснабжения.

Потреблением из сети не только активной, но также и реактивной мощности сопровождается работы подавляющего большинства электроприемников. Преобразуется активная мощность в механическую мощность на валу рабочей машины или теплоту, а на создание магнитных полей в электроприемниках расходуется реактивная мощность. Основными ее потребителями являются трансформаторы, асинхронные двигатели, индукционные печи, в которых отстает ток по фазе напряжения. Характеризуется потребление реактивной мощности коэффициентом мощности сosφ, представляющим отношение активной мощности Р к полной мощности S. Является удобным показателем коэффициент реактивной мощности tgφ, который выражает отношение реактивной мощности Q к активной Р (показывает, происходящее потребление реактивной мощности на единицу активной мощности).

Источниками реактивной мощности являются установки с опережающим током, они применяются для компенсации реактивной нагрузки с индуктивным характером цепи.

Электрическая нагрузка таким образом в электросети представляется активными и реактивными нагрузками.

При возникновении электрической нагрузки в распределительной сети, может возникать нагрев токоведущих частей (кабелей, проводов, обмоток трансформаторов и электродвигателей). Их чрезмерный нагрев приводит к преждевременному износу изоляции, поэтому не должна температура токоведущих частей превышать допустимые значения. Сечения кабелей и проводов необходимо выбирать по допустимому (расчетному) току нагрузки, для определения которого требуется определить расчетную мощность нагрузки.

При проектировании и эксплуатации СЭС за расчетную электрическую нагрузку принимается неизменная во времени нагрузка – Iрсч, вызывающая характеризующийся установившейся температурой максимальный нагрев токоведущих и с ними соседних частей. Допустимые значения нагрев превышать не должен. Для большинства кабелей и проводов установившееся тепловое состояние обычно наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках, имеющих номинальный ток нагрузки больше 1000 А, не менее 60 минут достигается установившаяся температура.

Электрические нагрузки

Электрической нагрузкой какого-либо элемента сети называется мощность, которой нагружен данный элемент сети. Например, если по кабелю передается мощность 120 кВт, то нагрузка кабеля равна тоже 120 кВт. Точно так же можно говорить о нагрузке на шины подстанции или на трансформатор и т. д. Величина и характер электрической нагрузки зависят от потребителя электрической энергии, который может быть назван приемником электрической энергии .

Наиболее распространенным и важным в производстве приемником является электродвигатель. Главными потребителями электрической энергии на промышленных предприятиях являются трехфазные двигатели переменного тока. Электрическая нагрузка электродвигателя определяется величиной и характером механической нагрузки.

Нагрузки необходимо покрывать от источника электрической энергии, которым является электрическая станция. Обычно между генератором и потребителем электрической энергии существует целый ряд элементов электрической сети. Например, если двигатели, приводящие в движение механизмы в цеху питаются от сети напряжением 380 В, то в цеху или около цеха должна быть расположена цеховая трансформаторная подстанция, на которой установлены силовые трансформаторы для питания цеховых установок (для покрытия цеховых нагрузок).

Это интересно:  Новый закон о нарушении пдд 2016

Трансформаторы через кабели или воздушные провода питаются либо от более мощной подстанции, либо от промежуточного распределительного пункта высокого напряжения, или, что часто встречается на предприятиях, от тепловой электрической станции предприятия. Во всех случаях покрытие нагрузок осуществляется от генераторов электрической станции. При этом минимальное значение нагрузка имеет на конечном пункте, например в цехе.

По мере приближения к источнику питания нагрузка растет за счет потерь энергии в передающих звеньях (в проводах, трансформаторах и т. д.). Наибольшего значения она достигает у источника питания — у генератора электрической станции.

Поскольку нагрузка измеряется в единицах мощности, она может быть активная РкВт, реактивная QкBap и полная S = √( P 2 + Q 2 ) кВА.

Нагрузка также может быть выражена в единицах тока. Если, например, по линии протекает ток I = 80 А, то эти 80 А являются нагрузкой линии. При прохождении тока по любому элементу установки выделяется тепло, в результате чего этот элемент (трансформатор, преобразователь, шины, кабели, провода и др.) нагревается.

Допустимые мощности (нагрузки) на данные элементы электротехнической установки (машины, трансформаторы, аппараты, провода и др.) определяются величиной допустимой температуры. Ток, протекающий по проводам, помимо потерь мощности, вызывает потери напряжения, которые не должны превышать величин, регламентированных руководящими указаниями.

В реальных установках нагрузка в виде тока или мощности не остается в течение суток неизменной, и поэтому в практику расчетов введены определенные термины и понятия различных видов нагрузок.

Номинальная активная мощность электродвигателя — мощность, развиваемая двигателем на валу при номинальном напряжении и токе якоря (ротора).

Номинальная мощность любого приемника , кроме электродвигателя это потребляемая им активная мощность Рн (кВт) или полная мощность S н (кВА) при номинальном напряжении.

Паспортная мощность Рпасп электроприемника в повторно-кратковременном режиме приводится к номинальной длительной мощности при ПВ = 100% по формуле P н = P пасп √ПВ

При этом ПВ выражен в относительных единицах. Например, двигатель с паспортной мощностью Рпасп = 10 кВт при ПВ = 25%, приведенный к номинальной длительной мощности ПВ = 100%, будет иметь мощность P н = 10 √25 = 5 кВт.

Групповая номинальная мощность (установленная мощность) — сумма номинальных (паспортных) активных мощностей отдельных рабочих электродвигателей, приведенных к ПВ = 100%. Например, если Рн1 = 2,8, Рн2 = 7, Рн3 = 20 кВт, Р4пасп= 10 кВт при ПВ = 25%, то P н = 2,8 + 7 + 20 + 5 = 34,8 кВт.

Расчетная, или максимальная активная, Рм, реактивная Qм и полная S м мощность, а также максимальный ток I м представляют собой наибольшие из средних величин мощностей и токов за определенный промежуток времени, измеряемый 30 мин. Вследствие этого расчетная максимальная мощность иначе называется получасовой или 30-минутной максимальной мощностью Рм = Р30. Соответственно, I м= I зо.

Расчетный максимум тока I м = I30 = √(P м 2 + Q м 2 )/(√3 U н) или I м = I30 = P м/( √3 U нС osφ) , где С osφ — средневзвешенное значения коэффициента мощности за расчетное время (30 мин.)

Графиком электрических нагрузок принято называть графическое изображение расходуемой мощности за определенный отрезок времени. Различают суточный и годовой графики нагрузок. Суточный график показывает зависимость расходуемой мощности от времени в течение суток. По вертикали откладывается нагрузка (мощность), по горизонтали — часы суток. Годовой график определяет зависимость расходуемой мощности от времени в течение года.

По своей форме графики электрических нагрузок для различных производств и потребителей сильно отличаются друг от друга.

Необходимо различать графики: цеховых нагрузок и нагрузок на шинах главного распределительного устройства собственной электростанции или подстанции. Эти два графика отличаются друг от друга прежде всего по абсолютным величинам почасовых нагрузок, а также по своему виду.

График на шинах электростанции (ГРУ) получается путём суммирования нагрузок по всем цехам предприятия и прочим потребителям, включая и внешних потребителей. При этом к цеховым нагрузкам следует прибавить потери мощности в цеховых трансформаторах и проводах, подводящих к трансформаторам. Вполне естественно, что на шинах ГРУ мощность значительно превышает мощность каждой отдельно взятой подстанции.

Про электрические нагрузки жилых зданий: Суточные графики нагрузки жилых зданий

Виды нагрузок или в чем сила, сопромат?

Знание — сила, а знание сил — залог долгой жизни для человека, замыслившего расчет строительных конструкций.

В данном случае имеются в виду физические силы, а всякие там силы духа, мысли, третьего глаза и тому подобные не рассматриваются. Во всяком случае до тех пор, пока телепаты и экстрасенсы не начнут вместо подъемных механизмов работать на стойках народного хозяйства, силой мысли перемещая панели и плиты перекрытия, а не ложки и стаканы в различных телешоу.

Вот только и с физическими силами далеко не все просто и понятно, как хотелось бы. Для начала все, что нас окружает и даже входит в наш состав, можно представить в виде физических сил, а физические силы принято делить на внешние и внутренние. При этом внешние силы называются нагрузками, а внутренние силы — напряжениями. Причем в зависимости от характера решаемой задачи внешние силы могут рассматриваться как внутренние и наоборот. Делать это относительно легко и незаметно для стороннего наблюдателя позволяет сила мысли, в частности закон равнодействия сил, сформулированный Ньютоном. Смысл этого закона сводится к тому, что сила противодействия равна по значению силе действия и направлена в противоположную сторону. Этот закон позволяет относительно легко составлять и решать уравнения равновесия для системы сил.

Нагрузками — внешними силами — занимается теоретическая механика, а напряжения — внутренние силы — удел теории сопротивления материалов и различных теорий упругости. Впрочем, как я уже говорил, деление сил на внешние и внутренние достаточно условно. Как в исследуемом материале возникают напряжения, как они распределены по длине, ширине и высоте элемента, куда направлены и чему равны — отдельная большая тема, нас же в данном случае интересует, откуда берутся внешние нагрузки, эти самые внутренние напряжения вызывающие.

Это интересно:  Профстандарт для главного бухгалтера бюджетного учреждения

Нагрузками, наиболее часто рассматриваемыми при расчете строительных конструкций, являются массы тел (причем далеко не всегда только физическая масса, а иногда еще и инерционная, но об этом чуть позже) и разница давлений. Но это далеко не все, что можно сказать о нагрузках.

В теоретической механике и сопромате принято различать нагрузки, действующие на рассчитываемые конструкции или элементы конструкций, по различным признакам. Одним из таких признаков является время действия нагрузки. По времени действия нагрузки делятся на постоянные и временные:

Постоянные нагрузки

Нагрузки, действующие на конструкцию в течение всего времени эксплуатации конструкции, будь то одна секунда или одно тысячелетие.

Как правило к постоянным нагрузкам относится только нагрузка от собственного веса конструкции. Например, для ленточного фундамента постоянной нагрузкой будет собственный вес всех элементов здания, а для фермы перекрытия — собственный вес верхнего и нижнего пояса, стоек, раскосов и соединительных элементов. При этом для каменных или железобетонных элементов нагрузка от собственного веса может составлять больше половины от расчетной нагрузки, а при расчете фундамента и все 90%, а для металлических и деревянных конструкций покрытий и перекрытий нагрузка от собственного веса как правило не превышает 3-10%.

Временные нагрузки

Это все остальные нагрузки, действующие на конструкцию.

В свою очередь временные нагрузки принято разделять на длительные и кратковременные:

Длительные нагрузки

Нагрузки — время действия которых значительно больше времени, в течение которого в конструкции происходят деформации под действием этих нагрузок.

Дело в том, что любое тело, в том числе и человеческое, под действием нагрузок деформируется, т.е. изменяются геометрические параметры тела, такие как длина, ширина, высота, прямолинейность осей и др., а это может непосредственно влиять на работу рассматриваемого элемента. Например, когда при расчете на прочность (расчет по 1 группе предельных состояний) мы составляем уравнения равновесия для балки, рассматриваемой, как прямолинейный стержень, то влияние деформаций мы при этом не учитываем. Учет деформаций ведется при расчете по 2 группе предельных состояний. Так вот, деформация любого тела — процесс не мгновенный. Проще говоря, на то чтобы материал деформировался — нужно время и чем больше инерционная масса рассматриваемого элемента, тем больше времени на деформацию нужно. Например, для легкого материала, например корабельного паруса из мешковины, порыв ветра может рассматриваться как длительная нагрузка, а вот для каменной стены толщиной в 1 метр тот же порыв ветра может рассматриваться как кратковременная нагрузка. Поэтому деление на длительные и кратковременные нагрузки является достаточно условным и зависит от инерционной массы рассматриваемого материала. А кроме того при этом следует учитывать и другие факторы, влияющие на время развития деформаций. Например, время деформации проседающих или пучинистых грунтов может измеряться неделями и даже месяцами, потому нагрузка от снега, лежащего несколько дней на кровле здания, при расчете фундамента может рассматриваться как кратковременная. А вот при расчете кровельного покрытия эта же нагрузку следует рассматривать как длительную.

Кратковременные нагрузки

Нагрузки — время действия которых сопоставимо со временем, в течение которого конструкция деформируется под действием этих нагрузок.

Но в данном случае для описания кратковременной нагрузки только времени действия недостаточно, потому как, если вы аккуратно поставите на 1 секунду мешок с цементом на пол — это одна нагрузка, а если вы тот же мешок с цементом уроните на пол с высоты 1 метр, при этом время контакта мешка с полом будет составлять все ту же 1 секунду, но это будет уже совсем другая нагрузка.

Для более точного определения нагрузки дополнительно разделяются на статические и динамические.

Статические нагрузки

Условно говоря, это силы, приложенные с минимальным ускорением или с ускорением, стремящимся к нулю.

Таким образом действие инерционной силы при столь малых ускорениях стремится к нулю и расчет ведется только на действие силы от физической массы. Или так: При воздействии статических нагрузок происходит относительно медленное нарастание деформаций, и потому инерционными массами отдельных элементов конструкции, перемещающихся в процессе деформации, можно пренебречь, так как ускорения таких перемещений являются незначительными. В результате этого равновесие между внешними и внутренними силами в любой момент действия статической нагрузки остается как бы неизменным.

К статическим относятся постоянные и длительные нагрузки, иногда кратковременные нагрузки.

Динамические нагрузки

Это нагрузки, изменяющиеся не только во времени, но и в пространстве.

Для динамических нагрузок характерна относительно большая скорость приложения, что требует при расчетах учитывать инерционную массу как объекта, создающего нагрузку, так и элемента, подвергающегося воздействию нагрузки. Другими словами, следует учитывать характер движения объекта создающего нагрузку, а также то, что инерционные массы элементов конструкции, подвергающиеся воздействию динамической нагрузки, перемещаются с ускорением и влияют на напряженно-деформированное состояние элементов. Чтобы учесть это влияние, в уравнения статического равновесия к внешним и внутренним силам добавляются силы инерции на основании принципа Даламбера. Добавление инерционных сил позволяет рассматривать любую движущуюся систему как находящуюся в состоянии статического равновесия в любой момент времени. Таким образом динамические нагрузки вызывают в материале исследуемого элемента конструкции динамические напряжения и поведение материала при этом оказывается отличным от поведения при статических напряжениях.

В свою очередь динамические нагрузки в зависимости от характера движения бывают также нескольких видов. Для строительных конструкций наиболее важными являются подвижные и ударные нагрузки:

Подвижные нагрузки

Это нагрузки возникающие в результате перемещения некоего объекта по поверхности исследуемой конструкции (вдоль рассматриваемой оси элемента).

Например, автомобиль, проезжающий по мосту, создает подвижную нагрузку на элементы моста. При этом подвижная нагрузка будет зависеть не только от массы автомобиля, но и от его скорости и траектории движения. Например, при движении по окружности центробежная сила будет тем больше, чем больше скорость движения, потому улететь в кювет на плохой дороге на большой скорости — пара пустяков.

Это интересно:  Комплексное страхование при ипотеке

Ударные нагрузки

Это нагрузки, возникающие в момент соприкосновения перемещающегося объекта с поверхностью исследуемой конструкции (вдоль или поперек рассматриваемой оси элемента).

Однако и это еще не все варианты классификации нагрузок. По площади приложения нагрузки делятся на сосредоточенные и распределенные.

Сосредоточенные нагрузки

Это силы, площадь приложения которых пренебрежимо мала по сравнению с площадью рассчитываемой конструкции.

Можно сказать, что сосредоточенная нагрузка — это и есть сила, действующая на конструкцию. При этом площадь действия силы не учитывается, а потому измеряется сосредоточенная нагрузка в килограммах или Ньютонах.

Распределенные нагрузки

Это все остальные нагрузки, т.е. силы, распределяющиеся по длине и ширине элемента.

Разнообразие распределенных нагрузок поистине не поддается описанию. Распределенные нагрузки могут равномерно и неравномерно распределенными, равномерно и неравномерно изменяющимися по длине или ширине, при этом характер изменения нагрузки может описываться уравнением параболы, синусоиды, окружности, овала и любым другим уравнением.

А самое примечательное во всем этом то, что один и тот же человек в зависимости от ситуации может рассматриваться и как сосредоточенная нагрузка и как распределенная, и как статическая и как динамическая и только постоянной нагрузкой человек быть не может.

В целом все это выглядит не совсем понятно, однако ничего страшного в этом нет, как говорится, лучше один раз рассчитать конструкцию, чем 100 раз прочитать, как это делается. Примеров расчета на сайте хватает. А кроме того, понимание основ сопромата позволяет в большинстве случаев определять нагрузки так, чтобы максимально упростить расчет.

Надеюсь, уважаемый читатель, информация, представленная в данной статье, помогла вам хоть немного разобраться в имеющейся у вас проблеме. Также надеюсь на то, что и вы поможете мне выбраться из той непростой ситуации, в которую я попал недавно. Даже и 10 рублей помощи будут для меня сейчас большим подспорьем. Не хочу грузить вас подробностями своих проблем, тем более, что их хватит на целый роман (во всяком случае мне так кажется и я даже начал его писать под рабочим названием «Тройник», на главной странице есть ссылка), но если я не ошибся в своих умозаключениях, то роману быть и вы вполне можете стать одним из его спонсоров, а возможно и героев.

После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Категории:
  • Расчет конструкций по нормативным документам . Нагрузки
Оценка пользователей: 12.7 (голосов: 3) Переходов на сайт: 13879 Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Теоретическая механика и сопромат

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Размерность для линейной нагрузки — Н/м, для нагрузки распределенной по площади — Н/м 2 , для объемной (например при учете собственного веса элементов конструкции) — Н/м 3 .

Например, на рисунке 1.23, а приведена равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой

приложенной в середине отрезка AB.

На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой

приложенной в точке C, причем AC = 2/3AB.

В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу

Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).



Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, 2α – центральный угол, ось Ox – ось симметрии (рисунок 1.24).

Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:

В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ]. Если цилиндр рассечен по диаметру (рисунок 1.25), то равнодействующая этих сил равна F = q ∙ d ∙ h ( d – внутренний диаметр) или

Разрывающие баллон по диаметру усилия:

Если принять a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно

Статья написана по материалам сайтов: electricalschool.info, doctorlom.com, isopromat.ru.

»

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock
detector